Processing Data Penelitian Kuantitatif menggunakan EVIEWS

Processing Data Penelitian Kuantitatif menggunakan EVIEWS

Pengenalan EViews
Eviews (Econometric Views) adalah software pengolahan data yang digunakan untuk berbagai
keperluan mulai dari Bisnis, Riset Internal serta penelitian. EViews menawarkan akses statistik yang kuat
kepada peneliti akademis, perusahaan, instansi pemerintah, dan siswa seperti peramalan (forecasting),
hubungan (Correlation), pengaruh dan sebagainya dengan antar muka (user interface) yang lebih friendly dan
mudah digunakan.
Gambar 1 : Proses Pengolahan Data
a. Uji Asumsi Klasik
1. Uji Multikolinearitas
Uji multikolinearitas bertujuan untuk menguji apakah model regresi terbentuk adanya korelasi tinggi
atau sempurna antar variabel bebas (independen). Jika ditemukan ada hubungan korelasi yang tinggi antar
variabel bebas maka dapat dinyatakan adanya gejala multikorlinear pada penelitian.
2. Uji Autokorelasi
Uji autokolerasi merupakan kolerasi yang terjadi antara residual pada satu pengamatan dengan
pengamatan lain pada model regresi. Autokorelasi dapat diketahui melalui Uji Durbin-Watson (D-W
Test), adalah pengujian yang digunakan untuk menguji ada atau tidak adanya korelasi serial dalam model
regresi atau untuk mengetahui apakah di dalam model yang digunakan terdapat autokorelasi diantara
variabel-variabel yang diamati
3. Uji Heteroskedastisitas
Uji heteroskedastisitas digunakan untuk mengetahui ada atau tidaknya penyimpangan asumsi klasik.
Heteroskedastisitas yaitu adanya ketidaksamaan varian dari residual untuk semua pengamatan pada model
regresi. Prasyarat yang harus terpenuhi dalam model regresi adalah tidak adanya gejala heteroskedastisitas.

4. Uji Normalitas
Uji normalitas untuk menguji apakah nilai residual yang telah distandarisasi pada model regresi
berdistribusi normal atau tidak. Cara melakukan uji normalitas dapat dilakukan dengan pendekatan analisis
grafik normal probability Plot. Pada pendekatan ini nilai residual terdistribusi secara normal apabila garis
(titik-titik) yang menggambarkan data sesungguhnya akan mengikuti atau merapat ke garis diagonalnya.
b. Uji Kelayakan Model (Goodness of Fit)
Uji kelayakan model adalah uji R2
untuk melihat kemampuan variable independen dalam menjelaskan
variable dependen. Nilai R2
berkisar antara 0 – 99, nilai R Square yang semakin mendekati 1 maka semakin
layak suatu model untuk digunakan.
c. Uji Parsial (Uji t)
Uji partial (uji t) adalah uji yang dilakukan untuk melihat apakah suatu variable independen
berpengaruh atau tidak terhadap variable dependen dengan membandingkan nilai thitung dengan ttabel.
Kriteria pengujian uji t adalah sebagai berikut :
– Jika nilai thitung > ttabel maka hipotesis di tolak, artinya variable tersebut berpengaruh terhadap variable
dependen.
– Jika nilai thitung < ttabel maka hipotesis di terima, artinya variable tersebut tidak berpengaruh terhadap
variable dependen.
d. Uji Simultan (Uji F)
Uji Simultan (uji F) adalah uji yang dilakukan untuk melihat apakah semua variable independen secara
bersama-sama berpengaruh atau tidak terhadap variable dependen dengan membandingkan nilai Fhitung dengan
Ftabel.
– Jika nilai Fhitung > Ftabel maka hipotesis di tolak, artinya secara bersama-sama variable independen
tersebut berpengaruh terhadap variable dependen.
– Jika nilai Fhitung < Ftabel maka hipotesis di terima, artinya secara bersama-sama variable independen
tersebut tidak berpengaruh terhadap variable dependen.
Regresi Linear Sederhana
Regresi linear sederhana adalah regresi linear yang terdiri dari 1 variabel dependen (Y) dan 1
variabel independen (X).
Yt=β0 + β1X1t+ εt

Dimana :
Y : Variabel Dependen
X : Variabel Independen
ε : error term (Standar Error)
t : menunjukkan jenis data berupa data runtun waktu (Time Series)
Uji-uji yang perlu dilakukan :
– Uji Normalitas
– Uji Autokorelasi
– Uji Heteroskedastistas
“ Uji Multikolinearitas TIDAK dilakukan dalam regresi liear sederhana karena hanya terdiri dari 1
variabel independen”.

Sumber Tutorial Download